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The non-self-similar problem of cylindrical shock interaction with a coaxial thin-walled 
perforated screen of cylindrical shape is investigated within the framework of modeling the 
screen by a discontinuous surface. The solution is constructed by the S. K. Godunov numerical 
method. In addition to the general relationships on the discontinuity, a necessary number 
of additional boundary conditions is invoked that express the specifics of the local gas 
progress through the perforation. Exactly as in known examples [1-3] of the construction 
of additional boundary conditions, an assumption about the quasistationary nature of the 
local flow is used. The suitability of such boundary conditions for the analysis of non- 
stationary processes requires special confirmation. A comparison of the results of solving 
the self-similar problem of the normal passage of a plane shock through a plane penetrable 
wall with experiment is made in [3]. The comparison of non-self-similar solutions obtained 
under conditions of a time-varying intensity of the discontinuity modeling the perforated 
screen with experiment is of interest. In this connection, we note the experimental data 
obtained in [4] and the results of the numerical investigation in [5]. 

!. Let us examine the problem of destruction of a gas-filled cylindrical shell of radius 
r 0 within a coaxial cylindrical, uniformly perforated, stiff screen of radius R (R > r0). 
Initially, the gas is everywhere at rest, the pressure density within the shell are constant 
and equal p,, p, and outside are P0, P0- The motion starts at the time t = 0 with the decay 
of the discontinuity originating because of instantaneous "destruction" of the shell. The 
screen is modeled by the surface of discontinuity of ideal perfect gas parameters. The wave 
motion of the medium for t > 0 is described by a system of one-dimensional nonstationary 
Euler equations [6] 

(1.1) 

We have the boundary condition of nonpenetration u = 0 on the axis r = 0. In addition to the 
fundamental boundary conditions resulting from the general integral conservation laws on the 
discontinuity [1-3] 

//2 c 2 
i ,ul = o, = - , , ,  = o ,  (1.2) 

on the surface of the discontinuity r = R additional relationships must be relied upon which 
will reflect the specifics of the localgas flow through the perforations. 

It is assumed in (i.i) and (1.2) that r is the distance to the axis of symmetry, u is 
the radial velocity, ~ is the adiabatic index, c = (yp/p)~/2 is the sound speed, F is the 
force acting from the gas per unit screen area, the square brackets denote the jump [Q] = 
Q2 - Qi for any parameter Q, and here and later the subscripts 1 and 2 will separate the 
gas parameters in the windward and leeward sides of the discontinuity, respectively. 

Let us introduce the Mach number M = lu/cl. The total quantity of additional boundary 
relationships to system (i.i) and (1.2) is determined by the condition of evolution of the 
discontinuity [7] in each of the following four possible flow modes: for M i < i, M 2 < 1 
one additional relationship is required~ for M i < i, M 2 ~ 1 two, for M l ~ I, M 2 ~ 1 one, and 
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M I ~ i, M 2 < i no additional relationships are required (let us note that in the terminology 
of [3] the second of the cases mentioned corresponds to a mode with so-called "closed 
separation zones"). 

As in [3, 8], specific expressions are obtained for the additional boundary conditions 
from an examination of the stationary local gas flow schemes through the perforations. 
Distinctions are due to the differences between the geometric o = S0/S and the effective 
E = Sm/S penetrability factors that hold for thin-walled screens (h << d). Here h and d 
are the characteristic values of the longitudinal and transverse dimensions of the perfora- 
tion channels, S is the area of a given screen section, S o is the area of minimal through 
section of perforations on the section S, and S m is the area of the minimal section of gas 
jets issuing from the perforation cells. 

According to data in [8, 9], the quantity ~ for h << d and M I < i, M 2 < i depends 
substantially or not only o but also the penetrating gas parameters even after attainment of 
the sound speed in the section S m. Using the asymptotics obtained in [8, 9], for the relation- 
ships between the parameters of the local gas flow through the holes and slits with sharp 
edges, the following approximate expression can be constructed for the additional boundary 
condition for thin-walled perforated screens for M l < i, M 2 < i: 

Cp--Pl--P2 ( 1 . 3 )  
t - k (v, o,  M~) t (~), 

where ~ is the local drag coefficient of the perforations as M l + 0 taken according to the 

hydraulic formula [i0], ~='{i-~ ~/~-~--~ ~12/~ 2 , and the dependence of k on MI, o, y is given 
by the formulas 7! 

k _ _ Z + 7 - - i  ZL 2 , L 2 =  ( 7 + i )  M~ ~, 

-~- 1 i -- ~ ~ZL ~ 2 +  (7- -  I) Mi 

Z : ( l - - 6 L 2 W - 2 )  - ~  6 - - - - i - - _ + i l - - - ] V ]  ' 

0 < L < N < i ,  ( 7 + i ) N  v - l - ( f - i ) N  v+l=2(1v  -1 . 

(1.4) 

The quantity k has the meaning of the so-called "compressibility correction" in the hydraulic 
relationship Cp = ~(~) [i0]. For air this correction is known from experiment. Comparison 
of the experimental points in [i0] with the curves (1.4), which are constructed for y = 1.4 
and different o, is shown in Fig. 1 (The steep sections of the curves correspond to flow 
"suppression" in the section Sm). The simple relationship 

P_~= ~ (i.5) Pi i - -  ~ZL 2 

results from (1.2)-(1.4) and is convenient for analysis of the system of boundary conditions, 
for instance, to check out the inequality [pp-Y] ~ 0, expressing the condition of a nondecrease 
in the entropy on the discontinuity under consideration. This comparison with experiment 
is the foundation for using (1.3) (or (1.5)) as the additional boundarycondition in the 
fundamental mode M I < i, M2 < I. 

2. Solution of the problem posed was constructed numerically by the finite-difference 
method of S. K. Godunov [6] on a uniform fixed computation mesh. The arithmetic average 
of the pressures at the upper and lower time layers was taken for the approximation of the 
nondivergent term p in the motion equations (i.I). Within the screen, 20 computational cells 
were arranged, and an increase in this number did not result in any noticeable change in the 
results. The time spacing was determined by the stability conditions [6]. 

All the parameters represented below should be understood as dimensionless: linear 
dimensions are referred to r0, the density to P0 the pressure and load on the screen to P0, 
and the time to -0~0rnI/2~-I12~0 �9 The numerical computation of the problem was executed for u = 1.4 
and several values of the parameters p,, o, R in the ranges 1.3<p.<i0; 002<(1<I; 2 <R<4. 

As a result of dissociation of the initial discontinuity, adivergent shock occurs at t = 
0 on the line r = i. At the time when its leading front reaches the line r = R, interaction 
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with the screen starts: a reflected shock appears that moves to the axis of symmetry, and 
the initial wave weakened by the screen that passes outside and whose front r = rs(t) starts 
to be propagated into surround space over the unperturbed gas p = p = io At this time the 
screen experiences shock loading. 

Results of computations for p, = p, = 2, R = 2 are shown in Fig. 2 for different values 
of the penetration factor o. The oscillatory nature of the nonstationary load F = F(t) acting 
on the screen (Fig. 2a) is caused by repeated interaction between the screen and inwardly 
reflected waves. The degree of penetrability substantially affects the relationship between 
the amplitudes of the first and repeated loading phases of the screen. One of the fundamental 
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characteristics of the passing wave is the pressure drop A = P(rs) - 1 on its front r = rs(t). 
The dependence of A on r s and o is monotonic (Fig. 2b). 

The ratio A(o)/A(1) characterizes the degree of weakening of the first passing wave 
by the screen. The dependence of q on r s and o is constructed in Fig. 3 for the case R = 2 
and different p, = p, = b (b = 2 are the solid lines, b = 1.6 the dash-dot, and b = i0 the 
dashes). 

The results of the present computations are compared with the experimental data in [4] 
in Figs. 4 and 5. In the experiment the shell was filled with compressed air to p, = 1.6; 
however, a weaker shock was obtained than for ideal dissociation of the discontinuity for the 
mentioned value of p,, as is explained by expenditure of parts of the compressed air energy 
in scattering of the material components of the shell. The dependence, observed in experiment 
[4], of the pressure drop A at the shock front on the distance r s to the axis of symmetry is 
shown by points in Fig. 4 (there is no screen, o = i). This dependence is described well by 
the solution of the problem of dissipation of a cylindrical discontinuity if p, = 1.35 and 
0, = 1.6 are taken (curve in Fig. 4). 

The computed and experimental versions of the dependence of A on the screen penetrability 
are shown for r s = i0 in Fig. 5 for two cases of the screen arrangement with respect to 

the shell: the solid line and open points correspond to R = 2, while the intermittent line 
and dark points correspond to R = 4. The experimental data presented have been obtained in 
[4] for uniformally perforated circular holes in thin-walled metal screens with h/d = 0.i, 
o = 0.02, 0.i, 0.25, 0.5. Agreement between the theoretical and experimental results indi- 
cates the possibility of using boundary conditions based on stationary schemes of local gas 
flow through perforations, to analyze nonstationary processes. 

3. An analogous problem, but with another formulation, was considered in [5]. The 
perforation of the cylindrical screen consisted of six longitudinal slits, the ratio between 
the perforation spacing and the screen radius was ~/3, i.e., the scale of the "local" flow 
through the perforation was comparable to the screen dimension. Under these conditions a 
quantitative comparison between the present computations and the results in [5] is not legiti- 
mate since the meaning of the concept of a surface of discontinuity as modelling the 
perforated screen is lost here. Nevertheless, on the basis of the results in [5], a number 
of deductions can be made in favor of the problem formulation we used. It turns out that 
even at such small distances as two perforation spacings and appropriate short times, 
substantial equilibrium of the field of gas flow parameters occurs in the angular coordinate. 
This indicates the expediency of a one-dimensional approach. And even more, than for the 
analysis of another perforation, in the form of circular holes, say, as in [4], three-dimen- 
sional nonstationary equations would have to be solved by the method of [5], while it is 
possible to limit oneself to the solution of the one-dimensional problem. 
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